Bitget App
交易「智」變
快速買幣市場交易合約跟單BOT理財
Mintlayer 價格

Mintlayer 價格ML

focusIcon
subscribe
上架
買入
報價幣種:
USD

您今天對 Mintlayer 感覺如何?

IconGood良好IconBad糟糕
注意:此資訊僅供參考。

Mintlayer 今日價格

Mintlayer 的即時價格是今天每 (ML / USD) $0.03392,目前市值為 $2.18M USD。24 小時交易量為 $270,458.67 USD。ML 至 USD 的價格為即時更新。Mintlayer 在過去 24 小時內的變化為 -1.19%。其流通供應量為 64,198,610 。

ML 的最高價格是多少?

ML 的歷史最高價(ATH)為 $0.9894,於 2024-01-11 錄得。

ML 的最低價格是多少?

ML 的歷史最低價(ATL)為 $0.02150,於 2023-09-11 錄得。
計算 Mintlayer 收益

Mintlayer 價格預測

什麼時候是購買 ML 的好時機? 我現在應該買入還是賣出 ML?

在決定買入還是賣出 ML 時,您必須先考慮自己的交易策略。長期交易者和短期交易者的交易活動也會有所不同。Bitget ML 技術分析 可以提供您交易參考。
根據 ML 4 小時技術分析,交易訊號為 強力賣出
根據 ML 1 日技術分析,交易訊號為 賣出
根據 ML 1 週技術分析,交易訊號為 賣出

ML 在 2026 的價格是多少?

根據 ML 的歷史價格表現預測模型,預計 ML 的價格將在 2026 達到 $0.03892

ML 在 2031 的價格是多少?

2031,ML 的價格預計將上漲 +28.00%。 到 2031 底,預計 ML 的價格將達到 $0.07064,累計投資報酬率為 +103.59%。

Mintlayer 價格歷史(USD)

過去一年,Mintlayer 價格上漲了 -92.86%。在此期間,ML 兌 USD 的最高價格為 $0.5467,ML 兌 USD 的最低價格為 $0.02995。
時間漲跌幅(%)漲跌幅(%)最低價相應時間內 {0} 的最低價。最高價 最高價
24h-1.19%$0.03386$0.03522
7d+2.45%$0.03326$0.04170
30d-38.21%$0.02995$0.06432
90d-77.41%$0.02995$0.1521
1y-92.86%$0.02995$0.5467
全部時間-86.43%$0.02150(2023-09-11, 1 年前 )$0.9894(2024-01-11, 1 年前 )

Mintlayer 市場資訊

Mintlayer 市值走勢圖

市值
$2,177,418.81
完全稀釋市值
$13,566,766.08
排名
ICO 價格
$0.1620 ICO 詳情
立即購買 Mintlayer

Mintlayer 行情

  • #
  • 幣對
  • 類型
  • 價格
  • 24 小時交易量
  • 操作
  • 1
  • ML/USDT
  • 現貨
  • 0.0339
  • $63.59K
  • ‌交易
  • Mintlayer 持幣分布集中度

    巨鯨
    投資者
    散戶

    Mintlayer 地址持有時長分布

    長期持幣者
    游資
    交易者
    coinInfo.name(12)即時價格表
    loading

    Mintlayer 評級

    社群的平均評分
    4.6
    100 筆評分
    此內容僅供參考。

    Mintlayer (ML) 簡介

    什麼是 Mintlayer

    Mintlayer 是一種權益證明(PoSLayer 2 協議,希望透過直接在比特幣上實現去中心化金融(DeFi)、智能合約、代幣化和去中心化交易等目標,來增強比特幣區塊鏈。該平台旨在利用比特幣強大的安全性和廣泛採用,同時解決其侷限性,例如缺乏智能合約功能和可擴展性問題。2024 1 29 日,Mintlayer 推出了主網。

    Mintlayer 認知到了比特幣作為更廣泛、更具包容性的金融生態系基礎的潛力。作為比特幣網路側鏈運行,Mintlayer 利用獨特的共識機制,將比特幣的安全性與 PoS 系統的靈活性和可擴展性結合起來。這種方法不僅提高了交易吞吐量和效率,還為比特幣帶來了更廣泛的金融服務和應用,包括 DeFi 項目、代幣化資產等,而不影響安全性或去中心化。

    相關頁面

    官方文檔: https://docs.mintlayer.org/

    官方網站: https://www.mintlayer.org/en/

    Mintlayer 如何運作?

    Mintlayer 的核心是利用複雜的比特幣錨定、檢查點和隨機選擇系統,確保其網路的完整性和安全性。Mintlayer 上的每個區塊都錨定到比特幣區塊鏈上的區塊,利用比特幣無與倫比的安全性保護自己的網路。這個過程確保了 Mintlayer 在運行其 Layer 2 功能時,可以從比特幣區塊鏈的穩健性中受益。檢查點系統使交易幾乎不可能被逆轉或篡改,進一步保護網路免受潛在攻擊,保持區塊鏈的完整性。

    除了安全措施之外,Mintlayer 還引入了一種新穎的可擴展性和用戶參與方法。透過批次和動態的槽分配機制,它允許在單一操作中處理多個代幣,進而大幅降低交易成本和網路壅塞。該系統不僅提高了可擴展性,而且使網路維護的參與更加民主化。用戶可以質押 Mintlayer 原生代幣(ML)參與區塊的產生和驗證,被選中的機率與質押的 ML 數量成正比。這種質押機制目的是鼓勵社群積極參與,並確保區塊驗證和產生過程公平且去中心化。

    什麼是 ML 代幣?

    ML Mintlayer 生態系的原生代幣,具備多種用途,包括支付交易手續費、質押參與網路,以及支援智能合約的建立。質押 ML 代幣不僅可以讓用戶幫助保護網路安全,還為他們提供了獲得獎勵的機會。此外,ML 代幣促進了 Mintlayer 生態系內的治理,讓代幣持有者在項目的開發和決策過程中擁有發言權。ML 的總供應量為 4 億枚。

    Mintlayer 的價格是由什麼決定?

    Mintlayer Web3 生態系中的其他區塊鏈資產一樣,其價格主要會受到供需動態和其他多種因素的影響,包括最新消息、加密貨幣趨勢和加密貨幣的深入分析。投資者和愛好者密切關注加密貨幣圖表和 Mintlayer 價格預測,以評估其作為 2024 年及未來的最佳加密貨幣投資的潛力。監管變化、市場波動和包括安全性在內的加密貨幣風險,在其估值中都發揮著重要的作用。此外,Mintlayer 技術的最新發展、在加密貨幣社群中的採用率,以及更廣泛的區塊鏈採用趨勢,也都會對其價格產生重大影響。隨著加密貨幣監管的發展,上述因素共同導致了加密貨幣交易所價格的波動,想要投資 Mintlayer 的人務必要進行謹慎分析和決策。

    那些對於投資或交易 Mintlayer 感興趣的人可能會想說:在哪裡可以購買 ML 呢?您可以在 Bitget 等領先交易所中購買 MLBitget 為加密貨幣愛好者提供了一個安全且用戶友善的平台。

    Mintlayer 社群媒體數據

    過去 24 小時,Mintlayer 社群媒體情緒分數是 1,社群媒體上對 Mintlayer 價格走勢偏向 看跌。Mintlayer 社群媒體得分是 29,539,在所有加密貨幣中排名第 538。

    根據 LunarCrush 統計,過去 24 小時,社群媒體共提及加密貨幣 1,058,120 次,其中 Mintlayer 被提及次數佔比 0%,在所有加密貨幣中排名第 603。

    過去 24 小時,共有 273 個獨立用戶談論了 Mintlayer,總共提及 Mintlayer 29 次,然而,與前一天相比,獨立用戶數 增加 了 25%,總提及次數增加。

    Twitter 上,過去 24 小時共有 1 篇推文提及 Mintlayer,其中 0% 看漲 Mintlayer,100% 篇推文看跌 Mintlayer,而 0% 則對 Mintlayer 保持中立。

    在 Reddit 上,最近 24 小時共有 6 篇貼文提到了 Mintlayer,相比之前 24 小時總提及次數 增加 了 50%。

    社群媒體資訊概況

    平均情緒(24h)
    1
    社群媒體分數(24h)
    29.54K(#538)
    社群媒體貢獻者(24h)
    273
    +25%
    社群媒體提及次數(24h)
    29(#603)
    +45%
    社群媒體佔有率(24h)
    0%
    Twitter
    推文(24h)
    1
    0%
    Twitter 情緒(24h)
    看漲
    0%
    中立
    0%
    看跌
    100%
    Reddit
    Reddit 分數(24h)
    6
    Reddit 貼文(24h)
    6
    +50%
    Reddit 評論(24h)
    0
    0%

    如何購買 Mintlayer(ML)

    建立您的免費 Bitget 帳戶

    建立您的免費 Bitget 帳戶

    使用您的電子郵件地址/手機號碼在 Bitget 註冊,並建立強大的密碼以確保您的帳戶安全
    認證您的帳戶

    認證您的帳戶

    輸入您的個人資訊並上傳有效的身份照片進行身份認證
    將 Mintlayer 兌換為 ML

    將 Mintlayer 兌換為 ML

    我們將為您示範使用多種支付方式在 Bitget 上購買 Mintlayer

    跟單交易專家,進行 ML 跟單交易!

    在 Bitget 註冊並成功購買 USDT 或 ML 後,您還可以跟單交易專家開始跟單交易。

    Mintlayer 動態

    ML KOL俱樂部和CGV主持人 Web3 派對及頒獎典禮,慶祝業界成長
    ML KOL俱樂部和CGV主持人 Web3 派對及頒獎典禮,慶祝業界成長

    簡單來說 ML KOL Club 攜手 CGV 成功舉辦「香港 Web3 共識香港「KOL與計畫交流會」匯集領先組織、傑出 Web3 專案和關鍵意見領袖。

    Mpost2025-02-26 10:22
    寫給 2024 年的自己:從心態管理到機會把握,交易者的 15 條領悟
    寫給 2024 年的自己:從心態管理到機會把握,交易者的 15 條領悟

    不要害怕嘗試那些一開始看起來不太明顯的機會。

    Chaincatcher2024-12-25 22:44
    Io.net 作為授權合作夥伴和雲端服務提供者加入 Dell Technologies 合作夥伴計劃
    Io.net 作為授權合作夥伴和雲端服務提供者加入 Dell Technologies 合作夥伴計劃

    簡單來說 io.net 和 Dell Technologies 合作,將 io.net 的 GPU 網路與戴爾的先進基礎設施集成,提供專為 AI、ML 和 HPC 工作負載設計的可擴展且經濟高效的解決方案。

    Mpost2024-12-20 12:33
    更多 Mintlayer 動態

    用戶還在查詢 Mintlayer 的價格。

    Mintlayer 的目前價格是多少?

    Mintlayer 的即時價格為 $0.03(ML/USD),目前市值為 $2,177,418.81 USD。由於加密貨幣市場全天候不間斷交易,Mintlayer 的價格經常波動。您可以在 Bitget 上查看 Mintlayer 的市場價格及其歷史數據。

    Mintlayer 的 24 小時交易量是多少?

    在最近 24 小時內,Mintlayer 的交易量為 $270,458.67。

    Mintlayer 的歷史最高價是多少?

    Mintlayer 的歷史最高價是 $0.9894。這個歷史最高價是 Mintlayer 自推出以來的最高價。

    我可以在 Bitget 上購買 Mintlayer 嗎?

    可以,Mintlayer 目前在 Bitget 的中心化交易平台上可用。如需更詳細的說明,請查看我們很有幫助的 如何購買 指南。

    我可以透過投資 Mintlayer 獲得穩定的收入嗎?

    當然,Bitget 推出了一個 策略交易平台,其提供智能交易策略,可以自動執行您的交易,幫您賺取收益。

    我在哪裡能以最低的費用購買 Mintlayer?

    Bitget提供行業領先的交易費用和市場深度,以確保交易者能够從投資中獲利。 您可通過 Bitget 交易所交易。

    您可以在哪裡購買 Mintlayer(ML)?

    透過 Bitget App 購買
    數分鐘完成帳戶註冊,即可透過信用卡或銀行轉帳購買加密貨幣。
    Download Bitget APP on Google PlayDownload Bitget APP on AppStore
    透過 Bitget 交易所交易
    將加密貨幣存入 Bitget 交易所,交易流動性大且費用低

    影片部分 - 快速認證、快速交易

    play cover
    如何在 Bitget 完成身分認證以防範詐騙
    1. 登入您的 Bitget 帳戶。
    2. 如果您是 Bitget 的新用戶,請觀看我們的教學,以了解如何建立帳戶。
    3. 將滑鼠移到您的個人頭像上,點擊「未認證」,然後點擊「認證」。
    4. 選擇您簽發的國家或地區和證件類型,然後根據指示進行操作。
    5. 根據您的偏好,選擇「手機認證」或「電腦認證」。
    6. 填寫您的詳細資訊,提交身分證影本,並拍攝一張自拍照。
    7. 提交申請後,身分認證就完成了!
    加密貨幣投資(包括透過 Bitget 線上購買 Mintlayer)具有市場風險。Bitget 為您提供購買 Mintlayer 的簡便方式,並且盡最大努力讓用戶充分了解我們在交易所提供的每種加密貨幣。但是,我們不對您購買 Mintlayer 可能產生的結果負責。此頁面和其包含的任何資訊均不代表對任何特定加密貨幣的背書認可,任何價格數據均採集自公開互聯網,不被視為來自Bitget的買賣要約。

    買入

    ‌交易

    理財

    ML
    USD
    1 ML = 0.03392 USD
    在所有主流交易平台中,Bitget 提供最低的交易手續費。VIP 等級越高,費率越優惠。

    Bitget 觀點

    AshuBajwaB60
    AshuBajwaB60
    10小時前
    # __Unlocking the Secrets of Artificial Intelligence: A Comprehensive Guide to Machine Learning__
    Artificial intelligence (AI) has revolutionized the way we live and work, with machine learning (ML) being a key driver of this transformation. In this article, we'll delve into the world of ML, exploring its definition, types, applications, and potential future developments. # What is Machine Learning? Machine learning is a subset of AI that involves the use of algorithms and statistical models to enable machines to learn from data, make decisions, and improve their performance over time. # Types of Machine Learning There are several types of ML, including: 1. *Supervised Learning*: Supervised learning involves training a model on labeled data to enable it to make predictions on new, unseen data. 2. *Unsupervised Learning*: Unsupervised learning involves training a model on unlabeled data to enable it to identify patterns and relationships. 3. *Reinforcement Learning*: Reinforcement learning involves training a model to make decisions based on rewards or penalties. 4. *Deep Learning*: Deep learning involves the use of neural networks with multiple layers to enable machines to learn complex patterns and relationships. # Applications of Machine Learning Machine learning has numerous applications, including: 1. *Image Recognition*: ML can be used for image recognition, enabling machines to identify objects, people, and patterns. 2. *Natural Language Processing*: ML can be used for natural language processing, enabling machines to understand and generate human language. 3. *Predictive Maintenance*: ML can be used for predictive maintenance, enabling machines to predict when maintenance is required. 4. *Recommendation Systems*: ML can be used for recommendation systems, enabling machines to recommend products or services based on user behavior. # Potential Future Developments of Machine Learning Machine learning is a rapidly evolving field, with several potential future developments, including: 1. *Explainable AI*: Explainable AI involves the development of ML models that can provide insights into their decision-making processes. 2. *Transfer Learning*: Transfer learning involves the development of ML models that can learn from one task and apply that knowledge to another task. 3. *Edge AI*: Edge AI involves the deployment of ML models on edge devices, such as smartphones and smart home devices. 4. *Quantum Machine Learning*: Quantum machine learning involves the development of ML models that can leverage the power of quantum computing. # Challenges and Limitations of Machine Learning While machine learning has numerous benefits and applications, it also faces several challenges and limitations, including: 1. *Data Quality*: ML models require high-quality data to learn and make accurate predictions. 2. *Bias and Fairness*: ML models can perpetuate bias and unfairness if they are trained on biased data. 3. *Explainability*: ML models can be difficult to interpret and explain, making it challenging to understand their decision-making processes. 4. *Security*: ML models can be vulnerable to security threats, such as data poisoning and model inversion attacks. # Conclusion Machine learning is a powerful technology that has the potential to transform numerous industries and aspects of our lives. While ML faces several challenges and limitations, its benefits and applications make it an exciting and rapidly evolving field. # Recommendations 1. *Stay Up-to-Date with Machine Learning Developments*: Stay informed about the latest ML developments, trends, and innovations. 2. *Invest in Machine Learning Education*: Invest in ML education and training to improve your understanding of ML concepts and applications. 3. *Participate in Machine Learning Communities*: Participate in ML communities and forums to learn from others and share your own experiences. 4. *Support Machine Learning Research*: Support ML research and development by contributing to open-source projects or investing in ML startups. # References: 1. Machine Learning. (n.d.). Andrew Ng. 2. Deep Learning. (n.d.). Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 3. Natural Language Processing. (n.d.). Christopher Manning and Hinrich Schütze. 4. Machine Learning: A Probabilistic Perspective. (n.d.). Kevin P. Murphy.
    UP+2.50%
    PEOPLE+0.45%
    yasiralitrader
    yasiralitrader
    15小時前
    *The Role of Machine Learning in Trading: Predicting Market Trends* 🤖
    *The Role of Machine Learning in Trading: Predicting Market Trends* 🤖 Machine learning (ML) is revolutionizing the trading landscape, enabling traders to make more informed decisions and predict market trends with greater accuracy 🔍. In this article, we'll explore the role of ML in trading and its potential to transform the industry 🚀. What is Machine Learning in Trading? 🤔 ML in trading involves using algorithms to analyze large datasets, identify patterns, and make predictions about future market trends 📊. ML models can be trained on various data sources, including: - *Historical market data*: ML models can analyze historical market data to identify trends and patterns 📊. - *Real-time market data*: ML models can analyze real-time market data to make predictions about future market movements 📊. - *Alternative data sources*: ML models can analyze alternative data sources, such as social media and news articles, to gain insights into market sentiment 📰. Types of Machine Learning in Trading 📊 There are several types of ML used in trading, including: - *Supervised learning*: ML models are trained on labeled data to predict specific outcomes 📊. - *Unsupervised learning*: ML models are trained on unlabeled data to identify patterns and trends 📊. - *Reinforcement learning*: ML models learn through trial and error to make optimal decisions 📊. Applications of Machine Learning in Trading 📈 ML has various applications in trading, including: - *Predictive modeling*: ML models can predict future market trends and movements 📊. - *Risk management*: ML models can help traders manage risk by identifying potential losses and opportunities 📊. - *Portfolio optimization*: ML models can optimize portfolio performance by identifying the most profitable trades and assets 📈. Benefits of Machine Learning in Trading 📈 The benefits of ML in trading include: - *Improved accuracy*: ML models can make more accurate predictions about future market trends 📊. - *Increased efficiency*: ML models can automate many tasks, freeing up traders to focus on higher-level decision-making 🕒. - *Enhanced risk management*: ML models can help traders manage risk more effectively, reducing potential losses 📊. Challenges and Limitations of Machine Learning in Trading 🚨 While ML has the potential to revolutionize trading, there are several challenges and limitations to consider, including: - *Data quality*: ML models require high-quality data to make accurate predictions 📊. - *Model interpretability*: ML models can be difficult to interpret, making it challenging to understand the reasoning behind trading decisions 🤔. - *Regulatory compliance*: ML models must comply with regulatory requirements, such as anti-money laundering and know-your-customer regulations 📝. Conclusion 🔑 Machine learning is transforming the trading landscape, enabling traders to make more informed decisions and predict market trends with greater accuracy 🔍. As ML technology continues to evolve, we can expect to see even more innovative applications in trading 🔮.$NEIROETH
    NEIROETH+2.72%
    SOCIAL0.00%
    yasiralitrader
    yasiralitrader
    1天前
    📊 *AI-Powered Predictive Analytics for BTC and Blockchain-Based Systems* 📈
    📊 *AI-Powered Predictive Analytics for BTC and Blockchain-Based Systems* 📈 The rise of artificial intelligence (AI) and machine learning (ML) has transformed the field of predictive analytics, enabling more accurate and informed decision-making in various industries, including finance and blockchain 🤖. In this article, we'll explore the role of AI-powered predictive analytics in BTC and blockchain-based systems, and its potential applications and benefits 📊. The Need for Predictive Analytics in BTC and Blockchain-Based Systems 🚨 BTC and blockchain-based systems are highly volatile and subject to various market and economic factors, making it challenging to predict their behavior and make informed decisions 📊. Predictive analytics can help address this challenge by: - *Identifying patterns and trends*: AI-powered predictive analytics can analyze large datasets to identify patterns and trends in BTC and blockchain-based systems, enabling more accurate predictions 📈. - *Predicting market fluctuations*: AI-powered predictive analytics can predict market fluctuations and price movements in BTC and blockchain-based systems, enabling investors and traders to make more informed decisions 📊. AI-Powered Predictive Analytics Techniques 🤖 Various AI-powered predictive analytics techniques can be applied to BTC and blockchain-based systems, including: - *Machine learning algorithms*: Machine learning algorithms, such as linear regression, decision trees, and neural networks, can be trained on historical data to predict future market trends and price movements 📊. - *Deep learning techniques*: Deep learning techniques, such as recurrent neural networks (RNNs) and long short-term memory (LSTM) networks, can be used to analyze complex patterns in BTC and blockchain-based systems 📈. - *Natural language processing*: Natural language processing (NLP) techniques can be used to analyze text data from social media, news, and other online sources to predict market sentiment and trends 📰. Real-World Applications and Use Cases 🌐 AI-powered predictive analytics has various real-world applications and use cases in BTC and blockchain-based systems, including: - *Trading and investment*: AI-powered predictive analytics can be used to predict market trends and price movements, enabling traders and investors to make more informed decisions 📊. - *Risk management*: AI-powered predictive analytics can be used to predict potential risks and threats, enabling organizations to develop more effective risk management strategies 🚨. - *Market research and analysis*: AI-powered predictive analytics can be used to analyze market trends and patterns, enabling organizations to gain valuable insights and make more informed decisions 📊. Benefits and Challenges 🤔 The use of AI-powered predictive analytics in BTC and blockchain-based systems has various benefits and challenges: - *Benefits*: Improved accuracy, increased efficiency, and enhanced decision-making 📊. - *Challenges*: Data quality and availability, model complexity, and regulatory uncertainties 🚨. Conclusion 🔑 In conclusion, AI-powered predictive analytics has the potential to revolutionize the field of BTC and blockchain-based systems, enabling more accurate and informed decision-making 📊. As the field continues to evolve, it's essential to stay informed about the latest developments and innovations in AI-powered predictive analytics 🔍.$WUF
    SOCIAL0.00%
    BTC+0.63%
    LoxxBTC
    LoxxBTC
    1天前
    No H4 MSB yet, watching ML Closely
    ML-0.87%
    Ayesha__khan
    Ayesha__khan
    2天前
    $BMT The $BMT plan outlines a strategic roadmap aimed at fostering growth, adoption, and innovation across various timelines. Here's a breakdown of the key initiatives: ### **Short-Term Plan (Next 6-12 months)** 1. **Listing on Major Exchanges**: By securing listings on prominent cryptocurrency exchanges, $BMT aims to enhance liquidity and make the token more accessible to a broader audience. 2. **Partnerships and Collaborations**: $BMT intends to forge alliances with leading blockchain projects, fintech companies, and industry experts to strengthen its ecosystem and expand its reach. 3. **Community Building**: A strong focus will be placed on cultivating an engaged and active community through social media, forums, and events, fostering a sense of ownership and participation among users. 4. **Technical Development**: Continuous improvement of the protocol, including the development of new features, tools, and infrastructure, will ensure $BMT remains competitive and innovative. ### **Mid-Term Plan (Next 1-2 years)** 1. **DeFi Integration**: $BMT plans to integrate with decentralized finance (DeFi) protocols, enabling functionalities such as lending, borrowing, and yield farming, which will enhance its utility and appeal. 2. **Gaming and NFTs**: The project will explore opportunities in the gaming and NFT sectors, leveraging its unique features to create value in these rapidly growing markets. 3. **Enterprise Adoption**: $BMT will work towards driving enterprise adoption by collaborating with businesses to integrate its technology into their operations, thereby expanding its real-world applications. 4. **Regulatory Compliance**: Ensuring compliance with evolving regulatory frameworks will be a priority, maintaining transparency and integrity to build trust with users and stakeholders. ### **Long-Term Plan (Next 2-5 years)** 1. **Global Expansion**: $BMT aims to expand its presence globally, entering new markets and regions to increase its user base and influence. 2. **Institutional Investment**: Attracting institutional investors will be a key focus, with efforts to collaborate with leading financial institutions to secure funding and credibility. 3. **Technological Advancements**: $BMT will continue to innovate by incorporating advanced technologies such as artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT) to enhance its platform and offerings. 4. **Sustainability and Social Impact**: The project will prioritize initiatives that promote environmental sustainability and social good, aligning with global trends and responsibilities.
    SOCIAL0.00%
    MAJOR+1.20%

    相關資產

    熱門加密貨幣
    按市值計算的8大加密貨幣。
    相近市值
    在所有 Bitget 資產中,這8種資產的市值最接近 Mintlayer。