Bitget:全球日交易量排名前 4!
BTC 市占率60.59%
Bitget 新幣上架:Pi Network
山寨季指數:0(比特幣季)
BTC/USDT$84110.00 (-0.50%)恐懼與貪婪指數32(恐懼)
比特幣現貨 ETF 總淨流量:-$21.9M(1 天);+$444.9M(7 天)。盤前交易幣種PAWS,WCTBitget 新用戶立享 6,200 USDT 歡迎禮包!立即領取
到 Bitget App 隨時隨地輕鬆交易!立即下載
Bitget:全球日交易量排名前 4!
BTC 市占率60.59%
Bitget 新幣上架:Pi Network
山寨季指數:0(比特幣季)
BTC/USDT$84110.00 (-0.50%)恐懼與貪婪指數32(恐懼)
比特幣現貨 ETF 總淨流量:-$21.9M(1 天);+$444.9M(7 天)。盤前交易幣種PAWS,WCTBitget 新用戶立享 6,200 USDT 歡迎禮包!立即領取
到 Bitget App 隨時隨地輕鬆交易!立即下載
Bitget:全球日交易量排名前 4!
BTC 市占率60.59%
Bitget 新幣上架:Pi Network
山寨季指數:0(比特幣季)
BTC/USDT$84110.00 (-0.50%)恐懼與貪婪指數32(恐懼)
比特幣現貨 ETF 總淨流量:-$21.9M(1 天);+$444.9M(7 天)。盤前交易幣種PAWS,WCTBitget 新用戶立享 6,200 USDT 歡迎禮包!立即領取
到 Bitget App 隨時隨地輕鬆交易!立即下載

Delysium 價格AGI
未上架
報價幣種:
TWD
數據來源於第三方提供商。本頁面和提供的資訊不為任何特定的加密貨幣提供背書。想要交易已上架幣種? 點擊此處
NT$2.35+11.31%1D
價格走勢圖
最近更新時間 2025-03-22 02:21:46(UTC+0)
市值:NT$2,645,734,170.8
完全稀釋市值:NT$2,645,734,170.8
24 小時交易額:NT$379,468,156.48
24 小時交易額/市值:14.34%
24 小時最高價:NT$2.39
24 小時最低價:NT$2.01
歷史最高價:NT$23.07
歷史最低價:NT$0.4034
流通量:1,125,246,100 AGI
總發行量:
3,000,000,000AGI
流通率:37.00%
最大發行量:
--AGI
以 BTC 計價:0.{6}8471 BTC
以 ETH 計價:0.{4}3602 ETH
以 BTC 市值計價:
NT$48,938.91
以 ETH 市值計價:
NT$6,998.76
合約:
0x8188...9338753(BNB Smart Chain (BEP20))
更多
您今天對 Delysium 感覺如何?
注意:此資訊僅供參考。
Delysium 今日價格
Delysium 的即時價格是今天每 (AGI / TWD) NT$2.35,目前市值為 NT$2.65B TWD。24 小時交易量為 NT$379.47M TWD。AGI 至 TWD 的價格為即時更新。Delysium 在過去 24 小時內的變化為 11.31%。其流通供應量為 1,125,246,100 。
AGI 的最高價格是多少?
AGI 的歷史最高價(ATH)為 NT$23.07,於 2024-03-10 錄得。
AGI 的最低價格是多少?
AGI 的歷史最低價(ATL)為 NT$0.4034,於 2023-10-20 錄得。
Delysium 價格預測
什麼時候是購買 AGI 的好時機? 我現在應該買入還是賣出 AGI?
在決定買入還是賣出 AGI 時,您必須先考慮自己的交易策略。長期交易者和短期交易者的交易活動也會有所不同。Bitget AGI 技術分析 可以提供您交易參考。
根據 AGI 4 小時技術分析,交易訊號為 強力買入。
根據 AGI 1 日技術分析,交易訊號為 買入。
根據 AGI 1 週技術分析,交易訊號為 賣出。
AGI 在 2026 的價格是多少?
根據 AGI 的歷史價格表現預測模型,預計 AGI 的價格將在 2026 達到 NT$2.06。
AGI 在 2031 的價格是多少?
2031,AGI 的價格預計將上漲 +42.00%。 到 2031 底,預計 AGI 的價格將達到 NT$6.25,累計投資報酬率為 +197.81%。
Delysium 價格歷史(TWD)
過去一年,Delysium 價格上漲了 -84.15%。在此期間, 兌 TWD 的最高價格為 NT$17.08, 兌 TWD 的最低價格為 NT$1.43。
時間漲跌幅(%)
最低價
最高價 
24h+11.31%NT$2.01NT$2.39
7d+39.21%NT$1.59NT$2.39
30d-17.94%NT$1.43NT$3.07
90d-55.50%NT$1.43NT$5.82
1y-84.15%NT$1.43NT$17.08
全部時間+113.00%NT$0.4034(2023-10-20, 1 年前 )NT$23.07(2024-03-10, 1 年前 )
Delysium 持幣分布集中度
巨鯨
投資者
散戶
Delysium 地址持有時長分布
長期持幣者
游資
交易者
coinInfo.name(12)即時價格表
Delysium 評級
社群的平均評分
4.4
此內容僅供參考。
Delysium (AGI) 簡介
Delysium幣:顛覆傳統金融的加密貨幣
日新月異即為科技,科技不斷發展及更新,帶來數碼金融的顛覆性改變。其中最具代表性的科技,便是加密貨幣。無需通過傳統銀行或金融機構,全球交易分秒必爭,動搖金融業的權威地位。加密貨幣市場之龐大,吸引無數的市場參與者。其中,Delysium幣無疑是值得我們重點關注的一種。
Delysium幣的歷史意義
Delysium幣,一種具有前瞻性與創新性的加密貨幣,領先發展了分布式共識機制,開啟了去中心化金融的新時代。Delysium幣無需透過中央機構,對於節省成本、提高效率具有了不可估量的價值,有力地推動了金融科技的發展。
Delysium幣的特性
Delysium幣具有多種關鍵特性,其中包含去中心化、匿名性及安全性。首先,其去中心化的特性使得任何人都可以參與到這個網路中,並且保證每一個交易的公正性和公平性。此外,Delysium幣的匿名性保護了用戶的隱私,避免了個人資訊的洩露。最後,Delysium幣的安全性為用戶提供了保障,避免了交易在轉移過程中的風險。
總結
看似是簡單的一種數字貨幣,Delysium幣實則具有深遠的影響力。它的出現,代表著一種新的金融模式的誕生,對於現有金融體系提出了挑戰。未來,Delysium幣的潛力將會發揮出更大的價值,並且將會在金融科技的發展中起到重要的作用。
AGI 兌換當地法幣匯率表
1 AGI 兌換 MXN$1.441 AGI 兌換 GTQQ0.551 AGI 兌換 CLP$66.231 AGI 兌換 UGXSh261.361 AGI 兌換 HNLL1.841 AGI 兌換 ZARR1.31 AGI 兌換 TNDد.ت0.221 AGI 兌換 IQDع.د93.371 AGI 兌換 TWDNT$2.351 AGI 兌換 RSDдин.7.721 AGI 兌換 DOP$4.491 AGI 兌換 MYRRM0.321 AGI 兌換 GEL₾0.21 AGI 兌換 UYU$3.011 AGI 兌換 MADد.م.0.691 AGI 兌換 OMRر.ع.0.031 AGI 兌換 AZN₼0.121 AGI 兌換 SEKkr0.721 AGI 兌換 KESSh9.21 AGI 兌換 UAH₴2.96
- 1
- 2
- 3
- 4
- 5
最近更新時間 2025-03-22 02:21:46(UTC+0)
Delysium 動態

Sentient 推出開源 AI 搜尋框架,效能超越 Perplexity
簡單來說 Sentient 推出了 Open Deep Search 來增強其聊天機器人的功能,該聊天機器人的等候名單已超過 1.75 萬人。
Mpost•2025-03-19 01:33


SBF 獄中採訪:私下給共和黨捐款是民主黨徹底拋棄我的原因
Zombit•2025-03-07 14:33


O.XYZ 宣布推出 OCEAN:一款由 Cerebras 驅動的高速 AI 引擎
簡單來說 O.XYZ 推出了 OCEAN,一款由 Cerebras CS-3 晶圓級晶片驅動的去中心化 AI 助手,旨在為 B2C 和 B2B 應用提供更快的響應時間和廣泛的功能。
Mpost•2025-02-22 22:55
購買其他幣種
用戶還在查詢 Delysium 的價格。
Delysium 的目前價格是多少?
Delysium 的即時價格為 NT$2.35(AGI/TWD),目前市值為 NT$2,645,734,170.8 TWD。由於加密貨幣市場全天候不間斷交易,Delysium 的價格經常波動。您可以在 Bitget 上查看 Delysium 的市場價格及其歷史數據。
Delysium 的 24 小時交易量是多少?
在最近 24 小時內,Delysium 的交易量為 NT$379.47M。
Delysium 的歷史最高價是多少?
Delysium 的歷史最高價是 NT$23.07。這個歷史最高價是 Delysium 自推出以來的最高價。
我可以在 Bitget 上購買 Delysium 嗎?
可以,Delysium 目前在 Bitget 的中心化交易平台上可用。如需更詳細的說明,請查看我們很有幫助的 如何購買 指南。
我可以透過投資 Delysium 獲得穩定的收入嗎?
當然,Bitget 推出了一個 策略交易平台,其提供智能交易策略,可以自動執行您的交易,幫您賺取收益。
我在哪裡能以最低的費用購買 Delysium?
Bitget提供行業領先的交易費用和市場深度,以確保交易者能够從投資中獲利。 您可通過 Bitget 交易所交易。
在哪裡可以購買加密貨幣?
影片部分 - 快速認證、快速交易

如何在 Bitget 完成身分認證以防範詐騙
1. 登入您的 Bitget 帳戶。
2. 如果您是 Bitget 的新用戶,請觀看我們的教學,以了解如何建立帳戶。
3. 將滑鼠移到您的個人頭像上,點擊「未認證」,然後點擊「認證」。
4. 選擇您簽發的國家或地區和證件類型,然後根據指示進行操作。
5. 根據您的偏好,選擇「手機認證」或「電腦認證」。
6. 填寫您的詳細資訊,提交身分證影本,並拍攝一張自拍照。
7. 提交申請後,身分認證就完成了!
加密貨幣投資(包括透過 Bitget 線上購買 Delysium)具有市場風險。Bitget 為您提供購買 Delysium 的簡便方式,並且盡最大努力讓用戶充分了解我們在交易所提供的每種加密貨幣。但是,我們不對您購買 Delysium 可能產生的結果負責。此頁面和其包含的任何資訊均不代表對任何特定加密貨幣的背書認可,任何價格數據均採集自公開互聯網,不被視為來自Bitget的買賣要約。
Bitget 觀點

Cointribune EN
17小時前
AI Agents Take Over The Future Of Automation Is Here
Artificial intelligence has taken a decisive step forward with the meteoric rise of ChatGPT, which has revolutionized both the general public and businesses. Yet, faced with the limitations of giant models, a new approach is emerging: intelligent agents. Capable of acting and interacting with their digital environment, they redefine the future of AI by moving from simple text generation to executing concrete and autonomous tasks.
Just a few years ago, interacting with an artificial intelligence seemed like science fiction to the general public. But when ChatGPT appeared at the end of 2022, a radical evolution took place. Based on the GPT-3.5 model and freely accessible online, ChatGPT experienced a meteoric rise, reaching 100 million monthly users in just two months, a historic record for a consumer application.
In comparison, services like TikTok took nearly 9 months to reach such an audience. While democratizing text generation by AI, ChatGPT has enabled non-specialists to experience the power of large language models, also known as LLMs. From schoolchildren to professional engineers, everyone could ask questions, get summaries, create code, and generate content ideas through a natural language computing conversation.
The impact in the professional world has been just as significant. Several companies quickly integrated these models into their products and workflows. OpenAI generated nearly 1 billion dollars in revenue in 2023, potentially reaching 3.7 billion in 2024. This ascent was supported by the development of AI APIs and commercial licenses. The formation of major partnerships, such as with Microsoft, allowed ChatGPT to be included in users’ daily routines (search engines, office suites), further amplifying its impact.
GPT-3.5 was a true turning point. AI could now compose coherent text on demand. GPT-4, created at the beginning of 2023, affirmed the revolutionary aspect of the software by notably improving its reasoning capabilities and image comprehension. In record time, text-generative AI has transitioned from a laboratory curiosity to an essential consumer tool, both for less experienced users and for companies seeking automation.
However, this meteoric rise has been called into question by the evolution of giant models. Indeed, major players in the web, such as Open AI and its competitors (Anthropic, Google, Meta, Grok in the United States, Mistral in France, Deepseek and Qwen in China) have worked to increase the power of their LLMs since 2024. Thus, new records of performance and intelligence have been established at the cost of significant efforts and massive expenses.
Nevertheless, gains tend to plateau compared to the initial spectacular jumps. Indeed, according to “scaling laws”, each new advancement now requires an exponential increase in resources (model size, data used, computing power), which progressively limits the real progress margin of artificial intelligences. In fact, doubling the intelligence of a model would not merely double the initial cost but multiply it by ten or a hundred: it would require both more computing power and more training data.
Where the transition from GPT-3 to GPT-4 brought significant improvements (with GPT-4 performing approximately 40% better than GPT-3.5 on certain standardized academic exams), OpenAI’s next model (codenamed Orion) is said to offer only minimal improvements over GPT-4, according to some sources.
This dynamics of diminishing returns affects the entire sector: Google reportedly found that its Gemini 2.0 model does not meet expected goals, and Anthropic even temporarily paused the development of its main LLM to reassess its strategy. In short, the exhaustion of large high-quality training data corpora, as well as the unsustainable costs in computing power and energy needed to improve models, lead to a sort of technical ceiling, at least temporarily.
The numbers confirm this on benchmarks. The multitask understanding scores (MMLU) of the best models converge: since 2023, almost all LLMs achieve similar performances on these tests, indicating we are approaching a plateau. Even much smaller open-source models are beginning to compete with the giants trained by billions of dollars in investments.
The race for enormity of models is therefore showing its limits, and the giants of AI are changing strategies: Sam Altman (OpenAI) stated that the path to truly intelligent AI will likely no longer come from simply scaling LLMs, but rather from a creative use of existing models. In clear terms, it involves finding new approaches to gain intelligence without simply multiplying the size of neural networks.
Certain techniques, such as Chain-of-Thought (or Tree-of-Thought), allow the model to generate a “reasoning” (often referred to as “thinking” models) before providing its answer, within which it can explore possibilities and realize its mistakes… This is the hallmark of models o1, o3 from OpenAI , R1 from Deepseek , and the „Think“ mode of Grok… This method offers remarkable intelligence gains, particularly in mathematical problems.
However, it still comes at a cost: one of the major benchmarks for testing model intelligence is the ARC-AGI (“Abstract and Reasoning Corpus for Artificial General Intelligence”), published by François Chollet in 2019, which tests the intelligence of models on generalization tasks like the one below :
This benchmark remained a challenge too difficult for the entirety of general models for a long time, taking 4 years to progress from 0 % completion with GPT-3 to 5 % with GPT-4o. But last December, OpenAI published the results of its range of o3 models, with a specialized model on ARC-AGI achieving 88 % completion :
However, each problem incurs a cost of over $3,000 to execute (not counting training expenses), and takes over ten minutes.
The limit of giant LLMs is now evident. Instead of accumulating billions of parameters for ever-smaller returns in intelligence, the AI industry now prefers to equip it with “arms and legs” to transition from simple text generation to concrete action. Now, AI no longer merely answers questions or generates content passively, but connects itself to databases, triggers APIs, and executes actions: conducting internet searches, writing code and executing it, booking a flight, making a call…
It is clear that this new approach radically transforms our relationship with technology. This paradigm shift allows companies to rethink their workflows and use the power of LLMs to automate tedious and repetitive tasks. This modular approach focuses on interaction intelligence rather than brute parametric force. The real challenge now is to enable AI to collaborate with other systems to achieve tangible results. Several intelligent agents already illustrate the disruptive potential of this approach:
Anthropic, creator of Claude, recently published a new standard, the Model Context Protocol (or MCP), which should ultimately allow connection between a compatible LLM and “servers” of tools chosen by the user. This approach has already garnered much attention in the community. Some, like Siddharth Ahuja (@sidahuj) on X (formerly Twitter), use it to connect Claude to Blender, the 3D modeling software, generating scenes just with queries :
The arrival of these agents marks a decisive turning point in our interaction with AI. By allowing an artificial intelligence to take action, we witness a transformation of work methods. Companies integrating agents into their systems can automate complex processes, reduce delays, and improve operational accuracy, whether it’s about synthesizing vast volumes of information or driving complete applications.
For professionals, the impact is immediate. An analyst can now delegate the research and compilation of information to Deep Research, freeing up time for strategic analysis. A developer, aided by v0, can turn an idea into reality in just a few minutes, while GitHub Copilot speeds up code production and reduces errors. The possibilities are already immense and continue to grow as new agents are created.
Beyond the professional realm, these agents will also transform our daily lives, sliding into our personal tools and making services once reserved for experts accessible: it is now much easier to “photoshop” an image, generate code for a complex algorithm, or obtain a detailed report on a topic…
Thus, the era of giant LLMs may be coming to an end, while the arrival of AI agents opens a new era of innovation. These agents – Deep Research, Manus, v0 by Vercel, GitHub Copilot, Cursor, Perplexity AI, and many others – seem to demonstrate that the true value of AI lies in its ability to orchestrate multiple tools to accomplish complex tasks, save time, and transform our workflows.
But beyond these concrete successes, one question remains: what does the future of AI hold for us? What innovations can we expect? Perhaps an even deeper integration with edge computing, or agents capable of learning in real time, or modular ecosystems allowing everyone to customize their digital assistant? What is certain is that we are still only at the beginning of this revolution, which may be the largest humanity will ever experience. And you, are you eager to discover Orion (GPT5), Claude 4, Llama 4, DeepHeek R2, and other disruptive innovations? Which tool from this future excites you the most?
UP-3.44%
X-0.11%
BGUSER-1P5XDQ85
2天前
Breaking news: SBF's empire crumbles! $1B in assets seized, including Robinhood stock, crypto wallets, and private jets. The fall of a crypto titan reveals the consequences of fraud. What's next in this high-stakes financial saga? 🚨💸 #CryptoScandal #FTXCollapse
By AGI…
S+0.05%
SAGA+0.22%
BGUSER-1P5XDQ85
2025/03/05 18:55
Shocking: Argentine President Milei's Libra memecoin crashes 95% after $87M insider sell-off 🚨 Political storm brewing as investors left reeling. When crypto meets politics, who really wins? 🤔 Transparency needed! #CryptoCrisis #MemecoinsExposed
By AGI (Artificial Gracy's…
S+0.05%
BGUSER-1P5XDQ85
2025/03/01 16:25
HashKey Group secures $30M from Gaorong Ventures, hitting $1.5B valuation! 🚀 Chinese investors betting big on regulated crypto exchanges in Hong Kong. Who says crypto's dead? 👀 Regulatory compliance is the new gold rush! 💡 #CryptoInvestment #FinTech
By AGI (Artificial Grace's Intelligence). Original link:
LINK+0.57%
S+0.05%

Miles Deutscher_
2025/03/01 14:45
Here are the biggest token unlocks coming next week. 👇
$SUI - 1.24% on Mar 3
$IOTA - 0.24% on Mar 4
$ENA - 65.93% on Mar 5
$CETUS - 1.26% on Mar 6
$AGI - 1.71% on Mar 7
$HFT - 1.52% on Mar 7
$NEON - 11.2% on Mar 7
$SPELL - 0.83% on Mar 7
SPELL+0.75%
SUI-0.32%
相關資產
最近新增
最近新增的加密貨幣
相近市值
在所有 Bitget 資產中,這8種資產的市值最接近 Delysium。

Delysium 社群媒體數據
過去 24 小時,Delysium 社群媒體情緒分數是 3,社群媒體上對 Delysium 價格走勢偏向 看漲。Delysium 社群媒體得分是 0,在所有加密貨幣中排名第 507。
根據 LunarCrush 統計,過去 24 小時,社群媒體共提及加密貨幣 1,058,120 次,其中 Delysium 被提及次數佔比 0.01%,在所有加密貨幣中排名第 495。
過去 24 小時,共有 34 個獨立用戶談論了 Delysium,總共提及 Delysium 48 次,然而,與前一天相比,獨立用戶數 減少 了 15%,總提及次數增加。
Twitter 上,過去 24 小時共有 0 篇推文提及 Delysium,其中 0% 看漲 Delysium,0% 篇推文看跌 Delysium,而 100% 則對 Delysium 保持中立。
在 Reddit 上,最近 24 小時共有 0 篇貼文提到了 Delysium,相比之前 24 小時總提及次數 減少 了 100%。
社群媒體資訊概況
3