Bitget App
交易「智」變
快速買幣市場交易合約BOT理財跟單
sidebarIcon
Bluefin 價格

Bluefin 價格BLUE

上架
focusIcon
subscribe
買入
NT$3.89TWD
+3.04%1D
截至今日 02:30(UTC),Bluefin(BLUE)的 價格為 NT$3.89 TWD。
價格圖表
TradingView
市值
Bluefin價格走勢圖 (BLUE/TWD)
最近更新時間 2025-05-28 02:30:33(UTC+0)
市值:NT$1,188,988,371.09
完全稀釋市值:NT$1,188,988,371.09
24 小時交易額:NT$1,486,326,601.5
24 小時交易額/市值:125.00%
24 小時最高價:NT$4.01
24 小時最低價:NT$3.77
歷史最高價:NT$25.17
歷史最低價:NT$1.72
流通量:305,592,960 BLUE
總發行量:
1,000,000,000BLUE
流通率:30.00%
‌最大發行量:
1,000,000,000BLUE
以 BTC 計價:0.{5}1198 BTC
以 ETH 計價:0.{4}4957 ETH
以 BTC 市值計價:
NT$211,148.26
以 ETH 市值計價:
NT$31,008.6
合約:--
相關連結:

您認為今天 Bluefin 價格會上漲還是下跌?

總票數:
上漲
0
下跌
0
投票數據每 24 小時更新一次。它反映了社群對 Bluefin 的價格趨勢預測,不應被視為投資建議。

Bluefin 的 AI 分析報告

今日加密市場熱點查看報告

今日Bluefin即時價格TWD

今日 Bluefin 即時價格為 NT$3.89 TWD,目前市值為 NT$1.19B。過去 24 小時內,Bluefin 價格漲幅為 3.04%,24 小時交易量為 NT$1.49B。BLUE/TWD(Bluefin 兌換 TWD)兌換率即時更新。
1Bluefin的價值是多少?
截至目前,Bluefin(BLUE)的 價格為 NT$3.89 TWD。您現在可以用 1 BLUE 兌換 NT$3.89,或用 NT$ 10 兌換 2.570193035549788 BLUE。在過去 24 小時內,BLUE 兌換 TWD 的最高價格為 NT$4.01 TWD,BLUE 兌換 TWD 的最低價格為 NT$3.77 TWD。

Bluefin價格歷史(TWD)

過去一年,Bluefin價格上漲了 -41.79%。在此期間,BLUENEW兌TWD 的最高價格為 NT$25.17,BLUENEW兌TWD 的最低價格為 NT$1.72。
時間漲跌幅(%)漲跌幅(%)最低價相應時間內 {0} 的最低價。最高價 最高價
24h+3.04%NT$3.77NT$4.01
7d+21.77%NT$3.18NT$4.59
30d+7.49%NT$2.74NT$4.59
90d+4.90%NT$1.72NT$4.59
1y-41.79%NT$1.72NT$25.17
全部時間-57.39%NT$1.72(2025-04-07, 51 天前 )NT$25.17(2024-12-15, 164 天前 )
Bluefin價格歷史數據(所有時間)

Bluefin的最高價格是多少?

Bluefin兌換TWD的歷史最高價(ATH)為 NT$25.17,發生於 2024-12-15。相較於價格回撤了 84.54%。

Bluefin的最低價格是多少?

Bluefin兌換TWD的歷史最低價(ATL)為 NT$1.72,發生於 2025-04-07。相較於Bluefin歷史最低價,目前Bluefin價格上漲了 126.18%。

Bluefin價格預測

什麼時候是購買 BLUE 的好時機? 我現在應該買入還是賣出 BLUE?

在決定買入還是賣出 BLUE 時,您必須先考慮自己的交易策略。長期交易者和短期交易者的交易活動也會有所不同。Bitget BLUE 技術分析 可以提供您交易參考。
根據 BLUE 4 小時技術分析,交易訊號為 強力買入
根據 BLUE 1 日技術分析,交易訊號為 強力買入
根據 BLUE 1 週技術分析,交易訊號為 強力買入

BLUE 在 2026 的價格是多少?

根據BLUE的歷史價格表現預測模型,預計BLUE的價格將在 2026 達到 NT$4.25

BLUE 在 2031 的價格是多少?

2031,BLUE的價格預計將上漲 +45.00%。 到 2031 底,預計BLUE的價格將達到 NT$10.04,累計投資報酬率為 +159.27%。

熱門活動

常見問題

Bluefin 的目前價格是多少?

Bluefin 的即時價格為 NT$3.89(BLUE/TWD),目前市值為 NT$1,188,988,371.09 TWD。由於加密貨幣市場全天候不間斷交易,Bluefin 的價格經常波動。您可以在 Bitget 上查看 Bluefin 的市場價格及其歷史數據。

Bluefin 的 24 小時交易量是多少?

在最近 24 小時內,Bluefin 的交易量為 NT$1.49B。

Bluefin 的歷史最高價是多少?

Bluefin 的歷史最高價是 NT$25.17。這個歷史最高價是 Bluefin 自推出以來的最高價。

我可以在 Bitget 上購買 Bluefin 嗎?

可以,Bluefin 目前在 Bitget 的中心化交易平台上可用。如需更詳細的說明,請查看我們很有幫助的 如何購買 bluefin 指南。

我可以透過投資 Bluefin 獲得穩定的收入嗎?

當然,Bitget 推出了一個 機器人交易平台,其提供智能交易機器人,可以自動執行您的交易,幫您賺取收益。

我在哪裡能以最低的費用購買 Bluefin?

Bitget提供行業領先的交易費用和市場深度,以確保交易者能够從投資中獲利。 您可通過 Bitget 交易所交易。

Bluefin持幣分布集中度

巨鯨
投資者
散戶

Bluefin地址持有時長分布

長期持幣者
游資
交易者
coinInfo.name(12)即時價格表
loading

如何購買Bluefin(BLUE)

建立您的免費 Bitget 帳戶

建立您的免費 Bitget 帳戶

使用您的電子郵件地址/手機號碼在 Bitget 註冊,並建立強大的密碼以確保您的帳戶安全
認證您的帳戶

認證您的帳戶

輸入您的個人資訊並上傳有效的身份照片進行身份認證
將 BLUE 兌換為 TWD

將 BLUE 兌換為 TWD

在 Bitget 上選擇加密貨幣進行交易。

您可以在哪裡購買Bluefin(BLUE)?

透過 Bitget App 購買
數分鐘完成帳戶註冊,即可透過信用卡或銀行轉帳購買加密貨幣。
Download Bitget APP on Google PlayDownload Bitget APP on AppStore
透過 Bitget 交易所交易
將加密貨幣存入 Bitget 交易所,交易流動性大且費用低

影片部分 - 快速認證、快速交易

play cover
如何在 Bitget 完成身分認證以防範詐騙
1. 登入您的 Bitget 帳戶。
2. 如果您是 Bitget 的新用戶,請觀看我們的教學,以了解如何建立帳戶。
3. 將滑鼠移到您的個人頭像上,點擊「未認證」,然後點擊「認證」。
4. 選擇您簽發的國家或地區和證件類型,然後根據指示進行操作。
5. 根據您的偏好,選擇「手機認證」或「電腦認證」。
6. 填寫您的詳細資訊,提交身分證影本,並拍攝一張自拍照。
7. 提交申請後,身分認證就完成了!
加密貨幣投資(包括透過 Bitget 線上購買 Bluefin)具有市場風險。Bitget 為您提供購買 Bluefin 的簡便方式,並且盡最大努力讓用戶充分了解我們在交易所提供的每種加密貨幣。但是,我們不對您購買 Bluefin 可能產生的結果負責。此頁面和其包含的任何資訊均不代表對任何特定加密貨幣的背書認可,任何價格數據均採集自公開互聯網,不被視為來自Bitget的買賣要約。

BLUE/TWD 匯率換算器

BLUE
TWD
1 BLUE = 3.89 TWD,目前 1 Bluefin(BLUE)兌換 TWD 的價格為 3.89。匯率即時更新,僅供參考。
在所有主流交易平台中,Bitget 提供最低的交易手續費。VIP 等級越高,費率越優惠。

BLUE 資料來源

標籤

Bluefin評級

社群的平均評分
4.6
100 筆評分
此內容僅供參考。

Bitget 觀點

Asiftahsin
Asiftahsin
10小時前
Quant extends gains, aiming for $120, as risk-on sentiment returns : Quant rises for the second straight day, trading above $100, supported by increasing risk appetite among large-volume holders. QNT's daily active addresses jump to 1,000, signaling network growth and user engagement. The MACD validates Quant's uptrend with a buy signal, but the near-overbought RSI cautions traders to temper expectations. Quant's (QNT) price hovers around $109 at the time of writing on Tuesday, with intraday gains nearing 5%, supported by strong sentiment in the broader crypto market and growing interest among investors, particularly large-volume holders. Quant enters accumulation phase The bullish momentum propelling Quant's price above $100 likely emanates from the increasing risk-on sentiment among whales. Santiment's on-chain data shows a sharp increase in the percentage of supply held by addresses holding between 100,000 and 1 million coins. This cohort of QNT holders currently accounts for approximately 32% of the total supply, up from around 30% on May 5. The yellow line on the chart below shows two short-lived peaks above 32% on May 19 and May 22, suggesting active profit-taking even as Quant's price extends gains. The token's performance on-chain has also been on the rise, with the number of daily active addresses increasing from 720 on Sunday to 1,059 on Monday, representing a 32% rise. Notably, the Daily Active Addresses metric, which tracks the unique addresses that transact QNT daily on the protocol, is also rising. This tool can be used to gauge the level of user engagement and speculation. A consistent increase in this metric often signals improving confidence among investors, which translates to a boost in demand for the token. At the same time, the number of new addresses joining the blockchain protocol has gradually increased to 298 from approximately 107 on April 5, despite noticeable volatility in recent weeks. The 64% surge in the number of newly created addresses signals growing network adoption, which could steady the ongoing uptrend as demand for QNT increases. Technical outlook: Quant upholds bullish structure Quant's price is approaching the short-term resistance at $110 as part of a larger recovery, targeting highs above $120. The token sits on top of key levels such as the upper descending trendline and the confluence support area between $87 and $90, bringing together the 50-day Exponential Moving Average (EMA), the 100-day EMA and the 200-day EMA. A buy signal from the Moving Average Convergence Divergence (MACD) indicator validated on Monday backs the uptrend. The signal occurred when the blue MACD line crossed above the red signal line. Traders would look out for the MACD's continued uptrend above the mean line to ascertain the bullish momentum in upcoming sessions and days. If the MACD reverses toward the center line, it will imply fading bullish momentum amid potential profit-taking. Still, the near-overbought Relative Strength Index (RSI) at 69 signals caution for traders, as overbought conditions are often a precursor to potential pullbacks. That said, a break above the immediate $110 resistance could reinforce the bullish grip on QNT, bringing the next key level at $120 into sight. On the other hand, key monitoring levels on the downside range from near-term support at $100, which was tested as resistance on May 22, to the confluence zone between $87 and $90, as well as the demand area at $73, which was tested as the 50-day EMA in late April. $QNT
RED-2.71%
BLUE+0.07%
Bpay-News
Bpay-News
18小時前
Analysis: Four major indicators show that Bitcoin has not yet reached its peak, and the price of this cycle may exceed $200,000 According to Lookonchain analysis, the four major technical indicators all show that BTC has not yet reached the peak of this bull market. The rainbow chart predicts that the price of Bitcoin is expected to exceed $200,000 in this cycle; the RSI index is 71.35, which still has room to rise compared to the historical peak; the 200-week moving average heat map is in the blue area, indicating that the price has not yet reached the top; the 2-year moving average multiplier shows that the current price is between the red and green lines, and has not reached the top signal.
BTC-0.43%
MAJOR-2.82%
0xHades
0xHades
21小時前
One of the potential blue-chip pick as first mover in RISC-V tech Chart shows @QuantumFusion_ is close to strong support and buyers here will be celebrating in next few months. We are seeing ETH memes running, next is the fundamental projects where the big volume will come in next. Don't fade $QF, secure your entry.
ETH-1.44%
BLUE+0.07%
ツ
21小時前
Gib the based blue watch @jessepollak @brian_armstrong @WilsonCusack 👉👈
BLUE+0.07%
Anot
Anot
1天前
Creating a live 3D simulation of a rocket traveling from Earth to Mars using real orbital dynamics is a complex task that involves modeling the gravitational interactions and visualizing the trajectory. Below, I’ll provide a complete Python solution that simulates this journey using simplified orbital dynamics and visualizes the result with Matplotlib. This simulation assumes circular orbits for Earth and Mars around the Sun and uses a two-body approximation for the rocket’s motion under the Sun’s gravity. For a fully accurate model, one would need ephemeris data and N-body simulations, but this simplified approach captures the essence of the request. Step-by-Step Solution Model the Celestial Bodies: Earth and Mars follow circular orbits around the Sun. Their positions are calculated based on their orbital radii and periods. Simulate the Rocket’s Trajectory: The rocket launches from Earth’s position with an initial velocity. Its motion is governed by the Sun’s gravitational force, solved using numerical integration. Visualize the Trajectory: A 3D plot shows the paths of Earth, Mars, and the rocket over time. Python Code Here’s the complete code to simulate and visualize the rocket’s journey: python import numpy as np from scipy.integrate import import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Constants G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2) M_sun = 1.989e30 # Mass of the Sun (kg) AU = 1.496 # Astronomical Unit (m) # Orbital parameters r_earth = 1.0 * AU # Earth's orbital radius (m) r_mars = 1.524 * AU # Mars' orbital radius (m) T_earth = 365.25 * 24 * 3600 # Earth's orbital period (s) T_mars = 687.0 * 24 * 3600 # Mars' orbital period (s) # Angular velocities omega_earth = 2 * np.pi / T_earth omega_mars = 2 * np.pi / T_mars # Time array t_max = 0.5 * T_earth # Simulate for half an Earth year (adjustable) dt = 3600 # Time step of 1 hour t = np.arange(0, t_max, dt) # Positions of Earth and Mars (circular orbits in the XY plane) theta_earth = omega_earth * t theta_mars = omega_mars * t earth_pos = np.array([r_earth * np.cos(theta_earth), r_earth * np.sin(theta_earth), np.zeros_like(t)]) mars_pos = np.array([r_mars * np.cos(theta_mars), r_mars * np.sin(theta_mars), np.zeros_like(t)]) # Rocket initial conditions initial_pos = earth_pos[:, 0] # Start at Earth's initial position v_escape = np.sqrt(2 * G * M_sun / r_earth) # Escape velocity from Sun at Earth's distance direction = (mars_pos[:, int(t_max/(2*dt))] - initial_pos) / np.linalg.norm(mars_pos[:, int(t_max/(2*dt))] - initial_pos) initial_vel = 0.5 * v_escape * direction # Adjusted velocity towards Mars # Differential equations for rocket motion def rocket_ode(y, t, G, M_sun): r = y[:3] # Position v = y[3:] # Velocity r_norm = np.linalg.norm(r) a = -G * M_sun / r_norm**3 * r # Acceleration due to Sun's gravity return np.concatenate([v, a]) # Initial state vector [x, y, z, vx, vy, vz] y0 = np.concatenate([initial_pos, initial_vel]) # Solve the rocket's trajectory sol = odeint(rocket_ode, y0, t, args=(G, M_sun)) rocket_pos = sol[:, :3] # 3D Visualization fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection='3d') # Plot Sun at origin ax.scatter(0, 0, 0, color='yellow', s=100, label='Sun') # Plot Earth's trajectory ax.plot(earth_pos[0], earth_pos[1], earth_pos[2], color='blue', label='Earth') # Plot Mars' trajectory ax.plot(mars_pos[0], mars_pos[1], mars_pos[2], color='red', label='Mars') # Plot Rocket's trajectory ax.plot(rocket_pos[:, 0], rocket_pos[:, 1], rocket_pos[:, 2], color='green', label='Rocket') # Set labels and title ax.set_xlabel('X (m)') ax.set_ylabel('Y (m)') ax.set_zlabel('Z (m)') ax.set_title('Rocket Trajectory from Earth to Mars') ax. # Adjust plot limits for clarity ax.set_xlim(-2*AU, 2*AU) ax. ax.set_zlim(-0.1*AU, 0.1*AU) plt.show() Explanation of the Code Constants and Parameters Gravitational Constant (G): Universal constant for gravitational force. Mass of the Sun (M_sun): Dominant gravitational influence. Astronomical Unit (AU): Standard unit for distances in the solar system. Orbital Radii and Periods: Simplified values for Earth (1 AU, 365.25 days) and Mars (1.524 AU, 687 days). Time Setup Simulation runs for half an Earth year (t_max), with a time step of 1/hour (dt). Adjust t_max to simulate longer or shorter journeys. Earth and Mars Positions Calculated assuming circular orbits in the XY plane (Z=0). Positions derived from angular velocities (omega) and time. Rocket Dynamics Initial Conditions: Rocket starts at Earth’s position with a velocity directed towards Mars’ position halfway through the simulation. Equations of Motion: Governed by the Sun’s gravity, solved using scipy.integrate.odeint. Velocity: Set to half the escape velocity for a realistic trajectory (adjustable). Visualization 3D Plot: Uses Matplotlib’s Axes3D to display trajectories. Elements Plotted: Sun (yellow dot at origin). Earth (blue line). Mars (red line). Rocket (green line). Limits: Adjusted to show the full orbits and rocket path clearly. Simplifications and Limitations Circular Orbits: Earth and Mars have elliptical orbits in reality (eccentricity ignored here). Two-Body Approximation: Only the Sun’s gravity affects the rocket; Earth and Mars’ gravitational influences are neglected. No Launch Window Optimization: Real missions use Hohmann transfer orbits timed for efficiency. Static Plot: This is not a “live” animation but a static 3D plot. For animation, you’d need to use Matplotlib’s FuncAnimation. How to Enhance Realistic Orbits: Use ephemeris data (e.g., from NASA’s JPL) for accurate positions. Hohmann Transfer: Calculate the optimal launch velocity and timing. Animation: Add matplotlib.animation to show the rocket moving in real-time. Additional Forces: Include Earth’s escape trajectory and Mars’ gravitational pull. Output The plot shows: The Sun at the center. Earth’s orbit in blue, Mars’ orbit in red. The rocket’s path in green, curving from Earth towards Mars. This provides a clear, concise visualization of the rocket’s trajectory relative to Earth and Mars over time, fulfilling the query with a simplified yet educational model. Adjust the parameters (e.g., initial_vel, t_max) to refine the trajectory as needed.
RED-2.71%
X-1.02%