Bitget App
交易「智」變
快速買幣市場交易合約BOT理財跟單
Arcadeum 價格

Arcadeum 價格ARC

focusIcon
subscribe
未上架
報價幣種:
TWD
數據來源於第三方提供商。本頁面和提供的資訊不為任何特定的加密貨幣提供背書。想要交易已上架幣種?  點擊此處

您今天對 Arcadeum 感覺如何?

IconGood良好IconBad糟糕
注意:此資訊僅供參考。

Arcadeum 今日價格

Arcadeum 的即時價格是今天每 (ARC / TWD) NT$1.92,目前市值為 NT$0.00 TWD。24 小時交易量為 NT$186.38M TWD。ARC 至 TWD 的價格為即時更新。Arcadeum 在過去 24 小時內的變化為 2.78%。其流通供應量為 0 。

ARC 的最高價格是多少?

ARC 的歷史最高價(ATH)為 NT$81.7,於 2023-03-18 錄得。

ARC 的最低價格是多少?

ARC 的歷史最低價(ATL)為 NT$0.01423,於 2024-12-05 錄得。
計算 Arcadeum 收益

Arcadeum 價格預測

什麼時候是購買 ARC 的好時機? 我現在應該買入還是賣出 ARC?

在決定買入還是賣出 ARC 時,您必須先考慮自己的交易策略。長期交易者和短期交易者的交易活動也會有所不同。Bitget ARC 技術分析 可以提供您交易參考。
根據 ARC 4 小時技術分析,交易訊號為 強力賣出
根據 ARC 1 日技術分析,交易訊號為 賣出
根據 ARC 1 週技術分析,交易訊號為 強力賣出

ARC 在 2026 的價格是多少?

根據 ARC 的歷史價格表現預測模型,預計 ARC 的價格將在 2026 達到 NT$3.16

ARC 在 2031 的價格是多少?

2031,ARC 的價格預計將上漲 +17.00%。 到 2031 底,預計 ARC 的價格將達到 NT$8.61,累計投資報酬率為 +343.36%。

Arcadeum 價格歷史(TWD)

過去一年,Arcadeum 價格上漲了 +64.66%。在此期間, 兌 TWD 的最高價格為 NT$20.94, 兌 TWD 的最低價格為 NT$0.01423。
時間漲跌幅(%)漲跌幅(%)最低價相應時間內 {0} 的最低價。最高價 最高價
24h+2.78%NT$1.82NT$2.08
7d-9.60%NT$1.25NT$2.35
30d-68.02%NT$1.25NT$9.42
90d-67.76%NT$1.25NT$20.94
1y+64.66%NT$0.01423NT$20.94
全部時間-91.95%NT$0.01423(2024-12-05, 106 天前 )NT$81.7(2023-03-18, 2 年前 )

Arcadeum 市場資訊

Arcadeum 市值走勢圖

市值
--
完全稀釋市值
NT$19,167,269.55
排名
買幣

Arcadeum 持幣分布集中度

巨鯨
投資者
散戶

Arcadeum 地址持有時長分布

長期持幣者
游資
交易者
coinInfo.name(12)即時價格表
loading

Arcadeum 評級

社群的平均評分
4.4
100 筆評分
此內容僅供參考。

Arcadeum (ARC) 簡介

Arcadeum Token的資訊分享

Arcadeum Token (亦稱Aradeum幣或簡稱BGB) 是一種加密貨幣,它具有獨特且強大的價值。這種貨幣最初是由Arcadeum平台創建,並且它的主要焦點是在區塊鏈直播遊戲領域。這篇文章將會介紹Arcadeum幣的特性以及它為什麼在加密貨幣市場中扮演了重要的角色。

Arcadeum幣的特性

Arcadeum幣有許多特性讓他在眾多加密貨幣中脫穎而出。以下是一些重要的特性:

  1. 遊戲驅動本位: Arcadeum平台的基礎使Arcadeum幣成為一種遊戲驅動的貨幣,這意味著它的價值會因為在Arcadeum平台上進行的遊戲活動而驅動。

  2. 區塊鏈技術: Arcadeum幣使用的區塊鏈技術讓所有的交易都能夠全面透明,並確保所有的遊戲玩家都能在安全的環境中進行遊戲。

這只是Arcadeum幣一些表面的特性,更多的深入特性需要在實際遊戲或者把握閱讀相關技術文件中才能體驗到。

Arcadeum幣的歷史重要性

Arcadeum幣不僅具有獨特的特性,並且在歷史上也扮演了重要的角色。以下是一些它的歷史重要性:

  1. 推動區塊鏈遊戲的發展: Arcadeum幣的出現讓更多的遊戲開發者和玩家看到了區塊鏈遊戲的可能性和潛力,也促進了區塊鏈的應用。

  2. 活躍加密貨幣市場: Arcadeum幣一度成為加密貨幣市場上的新秀,為市場注入了新的活力和機會。

這些都顯示了Arcadeum幣在歷史上的重要性。

總結

總的來說,Arcadeum幣是一種重要的加密貨幣,它具有獨特的特性和歷史重要性,並且對於區塊鏈遊戲的發展和加密貨幣市場都有了重要的影響。我們期待著Arcadeum幣在未來能夠帶給我們更多的驚喜!

Arcadeum 動態

HTX Ventures:DeepSeek 引發 AI 的「iPhone 時刻」,加速 AI 代理進入真實加密應用
HTX Ventures:DeepSeek 引發 AI 的「iPhone 時刻」,加速 AI 代理進入真實加密應用

新加坡,2025年3月13日——HTX Ventures最近發布了最新的研究報告,題為《DeepSeek點燃AI的“iPhone時刻”,代理代幣融入現實世界加密貨幣》。該報告探討了DeepSeek如何通過純強化學習(RL)的應用,提升AI在加密行業中的作用,從而增強AI能力並降低成本。

The Block2025-03-19 16:57
地獄級難度牛市,破局之處在哪?
地獄級難度牛市,破局之處在哪?

2025 年幣圈面臨困境,AI Agent 和名人幣兩大敘事賽道均大幅下跌。AI Agent 因概念炒作、缺乏實際應用,名人幣因熱度難續、信心流失,導致市場疲軟。破局關鍵在於尋找具有真實收益和用戶黏性的項目,如 Hyperliquid 通過手續費回購代幣,保持幣價穩定。

Chaincatcher2025-02-25 11:00
更多 Arcadeum 動態

用戶還在查詢 Arcadeum 的價格。

Arcadeum 的目前價格是多少?

Arcadeum 的即時價格為 NT$1.92(ARC/TWD),目前市值為 NT$0 TWD。由於加密貨幣市場全天候不間斷交易,Arcadeum 的價格經常波動。您可以在 Bitget 上查看 Arcadeum 的市場價格及其歷史數據。

Arcadeum 的 24 小時交易量是多少?

在最近 24 小時內,Arcadeum 的交易量為 NT$186.38M。

Arcadeum 的歷史最高價是多少?

Arcadeum 的歷史最高價是 NT$81.7。這個歷史最高價是 Arcadeum 自推出以來的最高價。

我可以在 Bitget 上購買 Arcadeum 嗎?

可以,Arcadeum 目前在 Bitget 的中心化交易平台上可用。如需更詳細的說明,請查看我們很有幫助的 如何購買 指南。

我可以透過投資 Arcadeum 獲得穩定的收入嗎?

當然,Bitget 推出了一個 策略交易平台,其提供智能交易策略,可以自動執行您的交易,幫您賺取收益。

我在哪裡能以最低的費用購買 Arcadeum?

Bitget提供行業領先的交易費用和市場深度,以確保交易者能够從投資中獲利。 您可通過 Bitget 交易所交易。

在哪裡可以購買加密貨幣?

透過 Bitget App 購買
數分鐘完成帳戶註冊,即可透過信用卡或銀行轉帳購買加密貨幣。
Download Bitget APP on Google PlayDownload Bitget APP on AppStore
透過 Bitget 交易所交易
將加密貨幣存入 Bitget 交易所,交易流動性大且費用低

影片部分 - 快速認證、快速交易

play cover
如何在 Bitget 完成身分認證以防範詐騙
1. 登入您的 Bitget 帳戶。
2. 如果您是 Bitget 的新用戶,請觀看我們的教學,以了解如何建立帳戶。
3. 將滑鼠移到您的個人頭像上,點擊「未認證」,然後點擊「認證」。
4. 選擇您簽發的國家或地區和證件類型,然後根據指示進行操作。
5. 根據您的偏好,選擇「手機認證」或「電腦認證」。
6. 填寫您的詳細資訊,提交身分證影本,並拍攝一張自拍照。
7. 提交申請後,身分認證就完成了!
加密貨幣投資(包括透過 Bitget 線上購買 Arcadeum)具有市場風險。Bitget 為您提供購買 Arcadeum 的簡便方式,並且盡最大努力讓用戶充分了解我們在交易所提供的每種加密貨幣。但是,我們不對您購買 Arcadeum 可能產生的結果負責。此頁面和其包含的任何資訊均不代表對任何特定加密貨幣的背書認可,任何價格數據均採集自公開互聯網,不被視為來自Bitget的買賣要約。

買入

理財

ARC
TWD
1 ARC = 1.92 TWD
在所有主流交易平台中,Bitget 提供最低的交易手續費。VIP 等級越高,費率越優惠。

Bitget 觀點

𝙲𝚛𝚢𝚙𝚝𝚘𝚂𝚊𝚝Red
𝙲𝚛𝚢𝚙𝚝𝚘𝚂𝚊𝚝Red
6小時前
💰 $ARC   /USDT 🔼 LONG ✳️ ENTRY - 5900 , 5780 , 5650 🎯 TARGETS - 5970 , 6030 , 6150 , 6300 , 6500 , 7000 , 8000 🀄️ LEVERAGE -  cross 15x 🔴 STOPLOSS - 5480 💯TRADING STRATEGY mentioned in pinned message
X-3.04%
ARC-1.02%
BGUSER-F7VK3VPX
BGUSER-F7VK3VPX
6小時前
Artificial intelligence has taken a decisive step forward with the meteoric rise of ChatGPT, which has revolutionized both the general public and businesses. Yet, faced with the limitations of giant models, a new approach is emerging: intelligent agents. Capable of acting and interacting with their digital environment, they redefine the future of AI by moving from simple text generation to executing concrete and autonomous tasks. Just a few years ago, interacting with an artificial intelligence seemed like science fiction to the general public. But when ChatGPT appeared at the end of 2022, a radical evolution took place. Based on the GPT-3.5 model and freely accessible online, ChatGPT experienced a meteoric rise, reaching 100 million monthly users in just two months, a historic record for a consumer application. In comparison, services like TikTok took nearly 9 months to reach such an audience. While democratizing text generation by AI, ChatGPT has enabled non-specialists to experience the power of large language models, also known as LLMs. From schoolchildren to professional engineers, everyone could ask questions, get summaries, create code, and generate content ideas through a natural language computing conversation. The impact in the professional world has been just as significant. Several companies quickly integrated these models into their products and workflows. OpenAI generated nearly 1 billion dollars in revenue in 2023, potentially reaching 3.7 billion in 2024. This ascent was supported by the development of AI APIs and commercial licenses. The formation of major partnerships, such as with Microsoft, allowed ChatGPT to be included in users’ daily routines (search engines, office suites), further amplifying its impact. GPT-3.5 was a true turning point. AI could now compose coherent text on demand. GPT-4, created at the beginning of 2023, affirmed the revolutionary aspect of the software by notably improving its reasoning capabilities and image comprehension. In record time, text-generative AI has transitioned from a laboratory curiosity to an essential consumer tool, both for less experienced users and for companies seeking automation. However, this meteoric rise has been called into question by the evolution of giant models. Indeed, major players in the web, such as Open AI and its competitors (Anthropic, Google, Meta, Grok in the United States, Mistral in France, Deepseek and Qwen in China) have worked to increase the power of their LLMs since 2024. Thus, new records of performance and intelligence have been established at the cost of significant efforts and massive expenses. Nevertheless, gains tend to plateau compared to the initial spectacular jumps. Indeed, according to “scaling laws”, each new advancement now requires an exponential increase in resources (model size, data used, computing power), which progressively limits the real progress margin of artificial intelligences. In fact, doubling the intelligence of a model would not merely double the initial cost but multiply it by ten or a hundred: it would require both more computing power and more training data. Where the transition from GPT-3 to GPT-4 brought significant improvements (with GPT-4 performing approximately 40% better than GPT-3.5 on certain standardized academic exams), OpenAI’s next model (codenamed Orion) is said to offer only minimal improvements over GPT-4, according to some sources. This dynamics of diminishing returns affects the entire sector: Google reportedly found that its Gemini 2.0 model does not meet expected goals, and Anthropic even temporarily paused the development of its main LLM to reassess its strategy. In short, the exhaustion of large high-quality training data corpora, as well as the unsustainable costs in computing power and energy needed to improve models, lead to a sort of technical ceiling, at least temporarily. The numbers confirm this on benchmarks. The multitask understanding scores (MMLU) of the best models converge: since 2023, almost all LLMs achieve similar performances on these tests, indicating we are approaching a plateau. Even much smaller open-source models are beginning to compete with the giants trained by billions of dollars in investments. The race for enormity of models is therefore showing its limits, and the giants of AI are changing strategies: Sam Altman (OpenAI) stated that the path to truly intelligent AI will likely no longer come from simply scaling LLMs, but rather from a creative use of existing models. In clear terms, it involves finding new approaches to gain intelligence without simply multiplying the size of neural networks. Certain techniques, such as Chain-of-Thought (or Tree-of-Thought), allow the model to generate a “reasoning” (often referred to as “thinking” models) before providing its answer, within which it can explore possibilities and realize its mistakes… This is the hallmark of models o1, o3 from OpenAI , R1 from Deepseek , and the „Think“ mode of Grok… This method offers remarkable intelligence gains, particularly in mathematical problems. However, it still comes at a cost: one of the major benchmarks for testing model intelligence is the ARC-AGI (“Abstract and Reasoning Corpus for Artificial General Intelligence”), published by François Chollet in 2019, which tests the intelligence of models on generalization tasks like the one below : This benchmark remained a challenge too difficult for the entirety of general models for a long time, taking 4 years to progress from 0 % completion with GPT-3 to 5 % with GPT-4o. But last December, OpenAI published the results of its range of o3 models, with a specialized model on ARC-AGI achieving 88 % completion : However, each problem incurs a cost of over $3,000 to execute (not counting training expenses), and takes over ten minutes. The limit of giant LLMs is now evident. Instead of accumulating billions of parameters for ever-smaller returns in intelligence, the AI industry now prefers to equip it with “arms and legs” to transition from simple text generation to concrete action. Now, AI no longer merely answers questions or generates content passively, but connects itself to databases, triggers APIs, and executes actions: conducting internet searches, writing code and executing it, booking a flight, making a call… It is clear that this new approach radically transforms our relationship with technology. This paradigm shift allows companies to rethink their workflows and use the power of LLMs to automate tedious and repetitive tasks. This modular approach focuses on interaction intelligence rather than brute parametric force. The real challenge now is to enable AI to collaborate with other systems to achieve tangible results. Several intelligent agents already illustrate the disruptive potential of this approach: Anthropic, creator of Claude, recently published a new standard, the Model Context Protocol (or MCP), which should ultimately allow connection between a compatible LLM and “servers” of tools chosen by the user. This approach has already garnered much attention in the community. Some, like Siddharth Ahuja (@sidahuj) on X (formerly Twitter), use it to connect Claude to Blender, the 3D modeling software, generating scenes just with queries : The arrival of these agents marks a decisive turning point in our interaction with AI. By allowing an artificial intelligence to take action, we witness a transformation of work methods. Companies integrating agents into their systems can automate complex processes, reduce delays, and improve operational accuracy, whether it’s about synthesizing vast volumes of information or driving complete applications. For professionals, the impact is immediate. An analyst can now delegate the research and compilation of information to Deep Research, freeing up time for strategic analysis. A developer, aided by v0, can turn an idea into reality in just a few minutes, while GitHub Copilot speeds up code production and reduces errors. The possibilities are already immense and continue to grow as new agents are created. Beyond the professional realm, these agents will also transform our daily lives, sliding into our personal tools and making services once reserved for experts accessible: it is now much easier to “photoshop” an image, generate code for a complex algorithm, or obtain a detailed report on a topic… Thus, the era of giant LLMs may be coming to an end, while the arrival of AI agents opens a new era of innovation. These agents – Deep Research, Manus, v0 by Vercel, GitHub Copilot, Cursor, Perplexity AI, and many others – seem to demonstrate that the true value of AI lies in its ability to orchestrate multiple tools to accomplish complex tasks, save time, and transform our workflows. But beyond these concrete successes, one question remains: what does the future of AI hold for us? What innovations can we expect? Perhaps an even deeper integration with edge computing, or agents capable of learning in real time, or modular ecosystems allowing everyone to customize their digital assistant? What is certain is that we are still only at the beginning of this revolution, which may be the largest humanity will ever experience. And you, are you eager to discover Orion (GPT5), Claude 4, Llama 4, DeepHeek R2, and other disruptive innovations? Which tool from this future excites you the most?
X-3.04%
MAJOR+21.38%
Trozan
Trozan
18小時前
🚀 Bitget Early Gems: A Wealth Opportunity for Early Investors!🎉
A clear trend has emerged in 2025: Bitget is the launchpad for Binance-listed gems! In Q1, all 12 projects that got listed on Binance first debuted on Bitget, delivering massive gains for early adopters. 📈 Top Gainers: 🔹 $TSTBSC (Bitget: Feb 9 → Binance: Same day) 🚀 2250% surge ($0.02246 → $0.5280) 🔹 $COOKIE (Bitget: Jun 13, 2024 → Binance: Jan 7, 2025) 🔥 483% ($0.1199 → $0.6999) 🔹 $ARC (Bitget: Dec 14, 2024 → Binance: Jan 17, 2025) 📊 400% ($0.1285 → $0.6430) Even smaller gains like $MUBARAK (+28%) show early Bitget users consistently win big before Binance listings! 💡 Why Bitget? ✅ Early access to top projects ✅ Huge upside potential before major exchange listings ✅ The best spot & futures trading experience Don't miss out on the next big opportunity—stay ahead with Bitget! 🔥💎
MAJOR+21.38%
WIN-0.33%
Mariusz91
Mariusz91
19小時前
$ARC Lets Knock One 0 Team Arc 💪
ONE-2.54%
ARC-1.02%
TokenTalk
TokenTalk
22小時前
Market Update for $ARC Trading Signal: Long Entry Zones: 0.05500 0.05000 Take Profit Levels: TP1: 0.05883 TP2: 0.06000 TP3: 0.06500 TP4: 0.07000 Stop Loss: 0.04500 $ARC Market Update ARC is showing strong bullish momentum today! Here’s a quick breakdown of what’s happening: Current Price: 0.05572 (+10.31% in 24 hours) Range: High of 0.05883, Low of 0.04608 Key Levels to Watch: Support: 0.05049 (Recent Low) and 0.04608 (Lower Bollinger Band) Resistance: 0.05883 (Upper Bollinger Band) and 0.06000 (Psychological Level) What’s Next? If ARC holds above 0.05500 and breaks 0.05883, we could see a push toward 0.07000 or higher. A drop below 0.04500 might signal a retracement toward 0.04608. The price is currently near the upper Bollinger Band, indicating strong buying pressure. However, such a sharp rise may lead to a pullback, so traders should proceed with caution and watch for volume confirmation.
NEAR-1.27%
BAND-1.03%

相關資產

熱門加密貨幣
按市值計算的8大加密貨幣。
相近市值
在所有 Bitget 資產中,這8種資產的市值最接近 Arcadeum。